7.5. A DESIGN METHODOLOGY 301

First, each class is critically evaluated to see if it is needed in its present form in the
final implementation. Some of the classes might be discarded if the designer feels they
are not needed during implementation.

Then the implementation of operations on the classes is considered. For this, rough
algorithms for implementation might be considered. While doing this, a complex op-
eration may get defined in terms of lower-level operations on simpler classes. In other
words, effective implementation of operations may require heavy interaction with some
data structures and the data structure to be considered an object in its own right. These
classes that are identified while considering implementation concerns are largely support
classes that may be needed to store intermediate results or to model some aspects of the
object whose operation is to be implemented. The classes for these objects are called
container classes.

Once the implementation of each class and each operation on the class has been
considered and it has been satisfied that they can be implemented, the system design
is complete. The detailed design might also uncover some very low-level objects, but
most such objects should be identified during system design.

7.5.4 Optimize and Package

In the design methodology used, the basic structure of the design was created during
analysis. As analysis is concerned with capturing and representing various aspects of the
problem, some inefficiencies may have crept in. In this final step, the issue of efficiency
is considered, keeping in mind that the final structures should not deviate too much
from the logical structure produced by analysis, as the more the deviation, the harder
it will be to understand a design. Some of the design optimization issues are discussed
next [133].

Adding Redundant Associations. The association in the initial design may
make it very inefficient to perform some operations. In some cases, these operations
can be made more efficient by adding more associations. Consider the example where
a Company has a relationship to a person (a company employs many persons) [133]. A
person may have an attribute languages-spoken, which lists the languages the person
can speak. If the company sometimes needs to determine all its employees who know
a specific language, it has to access each employee object to perform this operation.
This operation can be made more efficient by adding an index in the Company object for
different languages, thereby adding a new relationship between the two types of objects.
This association is largely for efficiency. For such situations, the designer must consider
each operation and determine how many objects in an association are accessed and how
many are actually selected. If the hit ratio is low, indexes can be considered.

Saving Derived Attributes. A derived attribute is one whose value can be de-
termined from the values of other attributes. As such an attribute is not independent,
it may not have been specified in the initial design. However, if it is needed very often
or if its computation is complex, its value can be computed and stored once and then

302 CHAPTER 7. OBJECT-ORIENTED DESIGN

accessed later. This may require new objects to be created for the derived attributes.
However, it should be kept in mind that by doing this the consistency between derived
attributes and base attributes will have to be maintained and any changes to the base
attributes may have to be reflected in the derived attributes.

Use of Generic Types. A language like C++ allows “generic” classes to be de-
clared where the base type or the type of some attribute is kept “generic” and the actual
type is specified only when the object is actually defined. (The approach of C++ does
not support true generic types, and this type of definition is actually handled by the
compiler.) By using generic types, the code size can be reduced. For example, if a list
is to be used in different contexts, a generic list can be defined and then instantiated
for an integer, real, and char types.

Adjustment of Inheritance. Sometimes the same or similar operations are de-
fined in various classes in a class hierarchy. By making the operation slightly more gen-
eral (by extending interface or its functionality), it can be made a common operation
that can be “pushed” up the hierarchy. The designer should consider such possibilities.
Note that even if the same operation has to be used in only some of the derived classes,
but in other derived classes the logic is different for the operation, inheritance can still
be used effectively. The operation can be pushed to the base class and then redefined
in those classes where its logic is different.

Another way to increase the use of inheritance, which promotes reuse, is to see if
abstract classes can be defined for a set of existing classes and then the existing classes
considered as a derived class of that. This will require identifying common behavior and
properties among various classes and abstracting out a meaningful common superclass.
Note that this is useful only if the abstract superclass is meaningful and the class
hierarchy is “natural.” A superclass should not be created simply to pack the common
features on some classes together in a class.

Besides these, the general design principles discussed earlier should be applied to
improve the design—to make it more compact, efficient, and modular. Often these goals
will conflict. In that case, the designer has to use his judgment about which way to go.
In general, as we stated earlier in the chapter, understandability and modularity should
be given preference over efficiency and compactness.

7.5.5 Examples

Before we apply the methodology on some examples, it should be remembered again
that no design methodology reduces the activity of producing a design to a series of
steps that can be mechanically executed; each step requires some amount of engineering
judgment. Furthermore, the design produced by following a methodology should not
be considered the final design. The design can and should be modified using the design
principles and the ultimate objectives of the project in mind. Methodologies are essen-
tially guidelines to help the designer in the design activity; they are not hard-and-fast
rules. The examples we give here are relatively small, and all aspects of the methodol-

7.5. A DESIGN METHODOLOGY 303

File

name

getword()

iskof()
History Counter
addWord() count
exists() increment()

Word display()

i string
setstring()
getstring()

Figure 7.16: Class diagramn for the word counting problem.

ogy do not get reflected in them. However, the design of the case studies, given at the
end of the chapter, will provide a more substantial example for design.

The Word-Counting Problem

Let us first consider the word counting problem discussed in Chapter 6 (for which the
structured design was done). The initial analysis clearly shows that there is a File
object, which is an aggregation of many Word objects. Further, one can consider that
there is a Counter object, which keeps track of the number of different words. It is
a matter of preference and opinion whether Counter should be an object, or counting
should be implemented as an operation. If counting is treated as an operation, the
question will be to which object it belongs. As it does not belong “naturally” to either
the class Word nor the class File, it will have to be “forced” into one of the classes. For
this reason, we have kept Counter as a separate object. The basic problem statement
finds only these three objects. However, further analysis for services reveals that some
history mechanism is needed to check if the word is unique. The class diagram obtained
after doing the initial modeling is shown in Figure 7.16.

Now let us consider the dynamic modeling for this problem. This is essentially a
batch processing problem, where a file is given as input and some output is given by
the system. Hence, the use case and scenario for this problem are straightforward. For
example, the scenario for the “normal” case can be:

i Svstem prompts for the file nae: user enters the Lile name.
Sustem checks for existence of the lile. |
Svstern resds the words from the Ble

Svstein prints the count.

304 CHAPTER 7. OBJECT-ORIENTED DESIGN

From this simple scenario, no new operations are uncovered, and our object diagram
stays unchanged. Now we consider the functional model. One possible functional model
is shown in Figure 7.17. The model reinforces the need for some object where the history
of what words have been seen is recorded. This object is used to check the uniqueness
of the words. It also shows that various operations like increment(), isunique(), and
addToHistory() are needed. These operations should appear as operations in classes or
should be supported by a combination of operations. In this example, most of these
processes are reflected as operations on classes and are already incorporated in the
design.

Text file History

No of
different
words

History

Figure 7.17: Functional Model for the word connting problem.

Now we are at the last two steps of design methodology, where implementation and
optimization concerns are used to enhance the object model. The first decision we take
is that the history mechanism will be implemented by a binary search tree. Hence,
instead of the class History, we have a different class Btree. Then, for the class Word,
various operations are needed to compare different words. Operations are also needed
to set the string value for a word and retrieve it. The final class diagram is similar in
structure to the one shown in Figure 7.16, except for these changes.

The final step of the design activity is to specify this design. This is not a part of
the design methodology, but it is an essential step, as the design specification is what
forms the major part of the design document. The design specification, as mentioned
earlier, should specify all the classes that are in the design, all methods of the classes
along with their interfaces. We use C++ class structures for our specification. The final
specification of this problem is given next. This specification can be reviewed for design
verification and can be used as a basis of implementing the design.

7.5. A DESIGN METHODOLOGY 305

class Word <

private :
char *string; // string representing the word
public:
bool operator == (Word); // Checks for equality
bool operator < (Word);
bool operator > (Word);

Word operator = (Word); // The assignment operator
void setWord (char *); // Sets the string for the word
char *getWord (); // gets the string for the word

}

class File {

private:
FILE inFile;
char *fileName;

public:
Word getWord (); // get a word; Invokes operations of Word
bool isEof (); // Checks for end of file
void fileOpen (char *);

};
class Counter {
private:
int counter;
public:

void increment ();
void display ();
};

class Btree: GENERIC in <ELEMENT_TYPE> {
private:
ELEMENT_TYPE element;
Btree < ELEMENT_TYPE > *left;
Btree < ELEMENT_TYPE > *right;
public:
void insert(ELEMENT_TYPE); // to insert an element
bool lookup(ELEMENT_TYPE); // to check if an element exists
};

As we can see, all the class definitions complete with data members and operations
and all the major declarations are given in the design specification. Only the implemen-
tation of the methods are not provided. This design was later implemented in C++.
The conversion to code required only minor additions and modifications to the design.
The final code was about 240 lines of C++ code (counting noncomment and nonblank
lines only).

306 CHAPTER 7. OBJECT-ORIENTED DESIGN

Rate of Returns Problem

Let us consider a slightly larger problem: that of determining the rate of returns on in-
vestments. An investor has made investments in some companies. For each investment,
in a file, the name of the company, all the money he has invested (in the initial purchase
as well as in subsequent purchases), and all the money he has withdrawn (through sale
of shares or dividends) are given, along with the dates of each transaction. The current
value of the investment is given at the end, along with the date. The goal is to find the
rate of return the investor is getting for each investment, as well as the rate of return for
the entire portfolio. In addition, the amounts he has invested initially, amounts he has
invested subsequently, amounts he has withdrawn, and the current value of the portfolio
also is to be output.

This is a practical problem that is frequently needed by investors (and forms the basis
of our second Case Study). The computation of rate of return is not straightforward and
cannot be easily done through spreadsheets. Hence, such a software can be of practical
use. Besides the basic functionality given earlier, the software needs to be robust and
catch errors that can be caught in the input data.

We start with the analysis of the problem. Initial analysis clearly shows that there
are a few object classes of interest—Portfolio, Investment, and Transaction. A
portfolio consists of many investments, and an investment consists of many transactions.
Hence, the class Portfolio is an aggregation of many Investments, and an Investment
s an aggregation of many Transactions. A transaction can be of Withdrawal type or
Deposit type, resulting in a class hierarchy, with Investment being the superclass and
Withdrawal and Deposit subclasses.

For an object of class Investment, the major operation we need to perform is to
find the rate of return. For the class Portfolio we need to have operations to compute
rate of return, total initial investment, total withdrawal, and total current value of
the portfolio. Hence, we need operations for these. The class diagram obtained from
analysis of the problem is shown in Figure 7.18.

In this problem, as the interaction with the environment is not much, the dynamic
model is not significant. Hence, we omit the dynamic modeling for this problem. A
possible functional model is given in Figure 7.19. The classes are then enhanced to
make sure that each of the processes of the functional model is reflected as operations
on various objects. As we can see, most of the processes already exist as operations.

Now we have to perform the last two steps of the design methodology, where imple-
mentation and optimization concerns are used to enhance the classes. While considering
the implementation of computation of total initial investment, computation of overall
return rate, overall withdrawals and so on, we notice that for all of these, appropriate
data from each investment is needed. Hence, to the class Investments, appropriate op-
erations need to be added. Further, we note that all the computations for total initial

7.5. A DESIGN METHODOLOGY

Portfolio

totinitinvest
totCurValue
totWithdrawis
totDeposits
rate

computeRate ()
computeRest ()
printResults ()

investment

name
rate

computeRate ()

I

Transaction

date
amount

Deposit Withdrawl
getamt () getamt ()
Fiowre 7.18: Class diagran for rate of return problem.

307

investment, total current value, and so on are all done together, and each of these is
essentially adding values from various investments. Hence, we combine them in a single
operation in Portfolio and a corresponding single operation in Investment. Studying
the class hierarchy, we observe that the only difference in the two subclasses Withdrawal
and Deposit is that in one case the amount is subtracted and in the other it is added.
In such a situation, the two types can be easily considered a single type by keeping
the amount as negative for a withdrawal and positive for a deposit. So we remove the
subclasses, thereby simplifying the design and implementation. Instead of giving the

class diagram for the final design, we provide the specification of the classes:

class Transaction {

private:

int amount; // money amount for the transaction
int month; // month of the transaction
int year; // year of the transaction

public:

getAmount () ;
getMonth () ;
getYear();

308 CHAPTER 7. OBJECT-ORIENTED DESIGN

Input File

Compute
Qverall
Return Rate

Compute Rate
for Each
Investment

Get Investment \investment
Details

Compute
Other
Amounts

Print
Results

Fignre 7.19: Fanctional model for the rate of veturn problem.

Transaction(amount, month, year); // sets values

};

class Investment {

private:
char *investmentName; // Name of the company
Transaction *transactArray; // List of transactions
int noOfTransacts; // Total number of transactions
float rateOfReturn; // rate of return

public:
getTransactDetails(); // Set details of transactions
computeRate();
float getRate(); // Return the rate of the returns
compute(initVal, totWithdrawls, totCurVal, totDeposits);

// Returns these values for this investment

};

class Portfolio {
private:
Investment *investArray; // List of investments
int noOfInvestments; // Total number of investments
int totallnitInvest;
int totalDeposits;
int totalCurVal;
int totalWithdrawl;
float RateOfReturns; // Overall rate of returns
public:
getInvestDetails(char * fname); // Parse the input file
computeRate(); // Compute rates of return

7.6. METRICS 309

compute(); // Compute other totals
printResults(); // Print return rates, total values, etc.

};

The design is self-explanatory. This design was later implemented in C++ code, and we
found that only minor implementation details were added during the implementation,
showing the correctness and completeness of the design. The final size of the program
was about 470 lines of C++ code (counting noncomment and nonblank lines only).

7.6 Metrics

We have already seen that the basic paradigm behind OO0D is fundamentally different
from the paradigm of function-oriented design. This has brought in a different building
block and concepts related to this building block. The definition of modularity has also
changed for this new building block, and new methodologies have been proposed for
creating designs using this paradigm. It is, therefore, natural to expect that a new set
of metrics will be required to evaluate an OO design. A few attempts have been made
to propose metrics for object-oriented software 1, 32, 111].

Here we present some metrics that have been proposed for evaluating the complexity
of an OOD. As design of classes is the central issue in OOD and the major output of
any OOD methodology is the class definition, these metrics focus on evaluating classes.
Note that for measuring the size of a system, conventional approaches, which measure
the size in LOC or function points, can be used, even if OO is used for design. It is the
metrics for evaluating the quality or complexity of the design that need to be redefined
for OOD. The metrics discussed were proposed in [32], and the discussion is based on
this work. The results of an experiment described in [6] for validating these metrics and
the metrics data presented in [32] are used to discuss the role of these metrics.

Weighted Methods per Class (WMC)

The effort in developing a class will in some sense be determined by the number of
methods the class has and the complexity of the methods. Hence, a complexity metric
that combines the number of methods and the complexity of methods can be useful in
estimating the overall complexity of the class. The weighted methods per class (WMC)
metric does precisely this.

Suppose a class C has methods My, My, ..., M,, defined on it. Let the complexity of
the method M; be ¢;. As a method is like a regular function or procedure, any complexity
metric that is applicable for functions can be used to define ¢; (e.g., estimated size,
interface complexity, and data flow complexity). The WMC is defined as:

are

1.

310 CHAPTER 7. OBJECT-ORIENTED DESIGN

If the complexity of each method is considered 1, WMC gives the total number of
methods in the class.

The data given in [6, 32], which is based on evaluation of some existing programs,
shows that in most cases, the classes tend to have only a small number of methods,
implying that most classes are simple and provide some specific abstraction and oper-
ations. Only a few classes have many methods defined on them. The analysis in [6]
showed that the WMC metric has a reasonable correlation with fault-proneness of a
class. As can be expected, the larger the WMC of a class the better the chances that
the class is fault-prone.

Depth of Inheritance Tree (DIT)

Inheritance is, as we have mentioned, one of the unique features of the object-oriented
paradigm. As we have said before, inheritance is one of the main mechanisms for reuse
in OOD—the deeper a particular class is in a class hierarchy, the more methods it has
available for reuse, thereby providing a larger reuse potential. At the same time, as we
have mentioned, inheritance increases coupling, which makes changing a class harder.
In other words, a class deep in the hierarchy has a lot of methods it can inherit, which
makes it difficult to predict its behavior. For both these reasons, it is useful to have
some metric to quantify inheritance. The depth of inheritance tree (DIT) is one such
metric.

The DIT of a class C in an inheritance hierarchy is the depth from the root class
in the inheritance tree. In other words, it is the length of the shortest path from the
root of the tree to the node representing C' or the number of ancestors C has. In case
of multiple inheritance, the DIT metric is the maximum length from a root to C.

The data in [6, 32] suggests that most classes in applications tend to be close to the
root, with the maximum DIT metric value (in the applications studied) being around 10.
Most the classes have a DIT of 0 (that is, they are the root). This seems to suggest that
the designers tend to keep the number of abstraction levels (reflected by the levels in the
inheritance tree) small, presumably to aid understanding. In other words, designers (of
the systems evaluated) might be giving up on reusability in favor of comprehensibility.
The experiments in [6] show that DIT is very significant in predicting defect-proneness
of a class: the higher the DIT the higher the probability that the class is defect-prone.

Number of Children (NOC)

The number of children (NOC) metric value of a class C is the number of immediate
subclasses of C'. This metric can be used to evaluate the degree of reuse, as a higher
NOC number reflects reuse of the definitions in the superclass by a larger number of
subclasses. It also gives an idea of the direct influence of a class on other elements
of a design—the larger the influence of a class, the more important that the class is
correctly designed. In the empirical observations, it was found that classes generally

7.6. METRICS 311

had a small NOC metric value, with a vast majority of classes having no children (i.e.,
NOC is 0). This suggests that in the systems analyzed, inheritance was not used very
heavily. However, the data in [6] seems to suggest that the larger the NOC, the lower
the probability of detecting defects in a class. That is, the higher NOC classes are less
defect-prone. The reasons for this are not definitive.

Coupling Between Classes (CBC)

As discussed earlier, coupling between modules of a system, in general, reduces modu-
larity and makes module modification harder. In OOD, as the basic module is a class,
it is desirable to reduce the coupling between classes. The less coupling of a class with
other classes, the more independent the class, and hence it will be more easily modifi-
able. Coupling between classes (CBC) is a metric that tries to quantify coupling that
exists between classes.

The CBC value for a class C is the total number of other classes to which the class
is coupled. Two classes are considered coupled if methods of one class use methods or
instance variables defined in the other class. In general, whether two classes are coupled
can easily be determined by looking at the code and the definitions of all the methods
of the two classes. However, note that there are indirect forms of coupling (through
pointers, etc.) that are hard to identify by evaluating the code.

The experimental data indicates that most of the classes are self-contained and
have a CBC value of 0, that is, they are not coupled with any other class, including
superclasses [32]. Some types of classes, for example the ones that deal with managing
interfaces (called interface objects earlier), generally tend to have higher CBC values.
The data in [6] found that CBC is significant in predicting the fault-proneness of classes,
particularly those that deal with user interfaces.

Response for a Class (RFC)

Although the CBC for a class captures the number of other classes to which this class is
coupled, it does not quantify the “strength” of interconnection. In other words, it does
not explain the degree of connection of methods of a class with other classes. Response
for a class (RFC) tries to quantify this by capturing the total number of methods that
can be invoked from an object of this class.

The RFC value for a class C is the cardinality of the response set for a class. The
response set of a class C is the set of all methods that can be invoked if a message is
sent to an object of this class. This includes all the methods of C and of other classes
to which any method of C sends a message. It is clear that even if the CBC value of
a class is 1 (that is, it is coupled with only one class), the RFC value may be quite
high, indicating that the “volume” of interaction between the two classes is very high.
Tt should be clear that it is likely to be harder to test classes that have higher RFC
values.

312 CHAPTER 7. OBJECT-ORIENTED DESIGN

The experimental data found that most classes tend to invoke a small number of
methods of other classes. Again, classes for interface objects tend to have higher RFC
values. The data in [6] found that RFC is very significant in predicting the fault-
proneness of a class—the higher the RFC value the larger the probability that the class
is defect-prone.

Lack of Cohesion in Methods (LCOAI)

This last metric in the suite of metrics proposed in [32] tries to quantify cohesion of
classes. As we have seen, along with low coupling between modules, high cohesion is
a highly desirable property for modularity. For classes, cohesion captures how closely
bound are the different methods of the class. One way to quantify this is given by the
LCOM metric.

Two methods of a class C can be considered “cohesive” if the set of instance variables
of C that they access have some elements in common. That is, if I and Iy are the set
of instance variables accessed by the methods M; and M,, respectively, then M; and
M; are similar if I} NI, # ¢. Let Q be the set of all cohesive pairs of methods, that
is, all (M;, M;) such that I; and I; have a non-null intersection. Let P be the set of all
noncohesive pairs of methods, that is, pairs such that the intersection of sets of instance
variables they access is null. Then LCOM is defined as

LCOM = |P| - |Q|,if |P| > |Q| 0 otherwise.

If there are n methods in a class C, then there are n(n — 1) pairs, and LCOM is the
number of pairs that are non cohesive minus the number of pairs that are cohesive. The
larger the number of cohesive methods, the more cohesive the class will be, and the
LCOM metric will be lower. A high LCOM value may indicate that the methods are
trying to do different things and operate on different data entities, which may suggest
that the class supports multiple abstractions, rather than one abstraction. If this is
validated, the class can be partitioned into different classes. The data in [6] found little
significance of this metric in predicting the fault-proneness of a class.

In [6], the first five metrics, which were found to be significant in predicting the
fault-proneness of classes, were combined to predict the fault-proneness of classes. The
experiments showed that the first five metrics, when combined (in this case the coeffi-
cients for combination were determined by multivariate analysis of the fault and metric
data) are very effective in predicting fault-prone classes. In their experiment, out of a
total of 58 faulty classes, 48 classes were correctly predicted as fault-prone. The predic-
tion missed 10 classes and predicted 32 extra classes as fault-prone, although they were
not so.

7.7. SUMMARY 313

7.7 Summary

In the previous chapter we studied how a software system can be designed using func-
tional abstraction as the basic unit. In this chapter, we looked at how a system can be
designed using objects and classes as the basic unit. The fundamental difference in this
approach from functional approaches is that an object encapsulates state and provides
some predefined operations on that state. That is, state (or data) and operations (i.e.,
functions) are considered together, whereas in the function-oriented approach the two
are kept separate.

When using an object-oriented approach, an object is the basic design unit. For
objects, during design, the class for the objects is identified. A class represents the type
for the object and defines the possible state space for the objects of that class and the
operations that can be performed on the objects. An object is an instance of a class and
has state, behavior, and identity. Objects in a system do not exist in isolation but are
related to each other. One of the goals of design is to identify the relationship between
the objects of different classes.

Universal Modeling Language (UML) has become the de-facto standard for building
models of object-oriented systems. UML has various types of diagrams to model different
types of properties, and allows both static structure as well as dynamic behavior to be
modeled. It is an extensible notation that allows new types to be added.

For representing the static structure, the main diagram is the class diagram, which
represents the classes in the system and relationships between the classes. The rela-
tionship between the classes may be generalization-specialization, which leads to class
hierarchies. The relationship may be that of an aggregation which models the “whole-
part of” relationship. Or it may be an association, which models the client-serve type
of relationship between classes. '

For modeling the dynamic behavior, sequence or collaboration diagrams (together
called interaction diagrams) may be used. These diagrams represent how a scenario is
implemented by involving different objects. The focus is on capturing the messages that
are exchanged between objects to implement a scenario.

There are many other diagrams that UML has proposed that can be used to model
other aspects. For example, the state diagram can be used to model behavior of a
class. Activity diagrams can model the activities that take place in a system during
some execution. For static structure, it provides notation for specifying subsystems,
packages, and components.

To ensure that the design is modular, some general properties should be satisfied.
The three properties we have discussed are cohesion, coupling, and open-closed principle.
Coupling is an inter-class concept and captures how closely the different classes inter-
act with each other and how much they depend on each other. Cohesion is an intra-class

314 CHAPTER 7. OBJECT-ORIENTED DESIGN

concept and captures how strongly the elements of a class are related. Open-closed
principle states that the classes should be designed in a manner that they are closed
for modification but are open for extension. A good design should have low coupling,
high cohesion, and should satisfy the open-closed principle—these make the design more
modular and easier to change.

A good modeling notation and principles to evaluate a design are the key necessities
for creating good design. Design methodologies help by providing some guidelines of
how to create a design. We discussed the object modeling technique for design, which
first creates a class model for the system, and then refines it through dynamic modeling,
and functional modeling. Identifying the internal classes and optimization are the final
steps in this methodology for creating a design.

Finally, we discussed some metrics that can be used to study the complexity of an
object-oriented design. We presented one suite of metrics that were proposed, along
with some data regarding their validation. The metric weighted methods per class
is defined as the sum of complexities of all the methods and gives some idea about
how much effort might be needed to develop the class. The depth of inheritance tree
of a class is defined as the maximum depth in the class hierarchy of this class, and
can represent the potential of reuse that exists for a class, and the degree of coupling
between the class and its parent classes. The number of children metric is the number
of immediate subclasses of a class, and it can be used to capture the degree of reuse of a
class. Coupling of a class is the number of classes whose methods it uses or who use its
methods. The response for a class metric is the number of methods that can be invoked
by sending a message to this class. It tries to capture the strength of interconnection
between classes. Finally, the lack of cohesion metric represents the number of method
pairs whose set of access variables have nothing in common minus the number of method
pairs that have some common instance variable.

Unlike in previous chapters, we have not discussed verification methods here. The
reason is that verification methods discussed in the previous chapters are general tech-
niques that are not specific to function-oriented approaches. Hence, the same general
techniques can be used for object-oriented design.

Exercises

1. What is the relationship between abstract data types and classes?
2. Why are private parts of a superclass generally not made accessible to subelasses?

3. In C++, friends of a class C can access the private parts of C. For declaring a class F' a
friend of C, where should it be declared—in C or in F? Why?

EXERCISES 315

What are the different wans twhich i object canaceess another object it a langnage
ke €5 -7 (Do not consider the secess allowed by being o triend.)

What are the potential problems that can arise in software maintenance due to different
types of inheritance?

What is the relationship between OOAL SRS, and OOD?

In the word-counting example, a different functional model was used from the one proposed
in Chapter 6. Use the model given in Chapter 6 and modify the OO design.

Suppose o shnudator fora disk is tobe written tor teaching an Operating Syvstems course).
Use OMT to design the shmalator,

If an association between classes has some attributes of its own, how will you implement
it?

If we were to nse the method deseribed in Chapter 5 to identify errar-prone and coniplex

modules, which of the netries will vorr nse and why tvon may also combine the metries).

Design an experiment to validate your proposal for predicting error-prone modules. Spec-
ify data collection and analysis. '

Compare the QO desigus wid the suructared design of the case study to obtain suine
observations for compining the two design strategies (this can be considered aresearch
problem:.

316 CHAPTER 7. OBJECT-ORIENTED DESIGN

Case Studies

As with previous chapters, we end this chapter by performing the object-oriented design
of the case studies. Here we discuss the application of the design process on the case
study, i.e., how the design for the case studies is created. The final design specifications
are given on the Web site. While discussing the creation of design, we provide only the
main steps to give an idea of the design activity.

Case Study 1 Course Scheduling

We start the design activity by identifying classes of objects in the problem domain and
relationship between the classes. From the problem specification, given in Chapter 3,
we can clearly identify the following objects: TimeTable, Course, Room, LectureSlot,
CToBeSched (course to be scheduled), InputFile_1, and InputFile 2. From the prob-
lem, it is clear that TimeTable, an important object in the problem domain, is an
aggregation of many TimeTableEntry, each of which is a collection of a Course, a Room
where the course is scheduled, and a LectureSlot in which the course is scheduled.

On looking at the description of file 1, we find that it contains a list of rooms,
courses, and time slots that is later used to check the validity of entries in file 2. This
results in the objects RoomDB, CourseDB, and S1otDB, each of which is an aggregation
of many members of Room, Course, and Slot, respectively. Similarly, on looking at
the description of file 2, we find that it contains a TableOfCToBeSched, which is an
aggregation of many CToBeSched.

On studying the problem further and considering the scheduling constraints im-
posed by the problem, it is clear that for scheduling, the courses have to be divided
into four different types—depending on whether the course is a UG course or a PG
course, and whether or not preferences are given. In other words, we can specialize
CToBeSched to produce four subclasses: PGwithPref, UGwithPref, PGwithoutPref,
and UGwithoutPref. The classes that represent courses with preferences will contain a
list of preferences, which is a list of LectureSlots. This is the only hierarchy that is
evident from examining the problem.

Considering the attributes of the object classes, the problem clearly specifies that a
Room has the attributes roomNo and capacity; a LectureSlot has one major attribute,
the slot it represents; and a Course has courseName as an attribute. A CToBeSched
contains a Course and has enrollment as an attribute.

Considering the services for the classes, we identify from the problem specifica-
tion services like scheduleAll() on TableOfCToBeSched, which schedules all the courses,
printTable() for the TimeTable, setentry() and getentry() for a TimeTableEntry, and
insert() and lookup() operations for the various lists. The initial class diagram is shown
in Figure 7.20.

CASE STUDIES 317

RoomDB Room
roomNo
capacity

inputFile1
insert ()
Ko—— lookup ()
CourseDB Course
name
insert ()
lookup ()
InputFile2
SiotDB LectureSlot
slot
insert ()
lookup ()
TableofCtoBeSched
CtoBeSched
enrollment K>
scheduleAll{)
PGwithPref UGwithPref PGwithoutPref UGwithoutPref
LectureSiot LectureSiot
TimeTable TimeTableEntry Course
O——J Room
printTatle () setentry ()
getentry () LectureSiot

Fiowre 7.20: Initial class diagram for the case study.

318 CHAPTER 7. OBJECT-ORIENTED DESIGN

The system here is not an interactive system; hence dynamic modeling is rather
straightforward. The normal scenario is that the inputs are given and the outputs are
produced. There are at least two different normal scenarios possible, depending on
whether there are any conflicts (requiring conflicts and their reasons to be printed) or
not (in"which case only the timetable is printed). The latter normal scenario does not
reveal any new operations. However, a natural way to model the first scenario is to
have an object ConflictTable into which different conflicts for the different time slots
of different courses are stored, and from where they are later printed. Hence, we add
this object and model it as an aggregation of ConflictTableEntry, with an operation
insertEntry() to add a conflict entry in the table and an operation printTable() to print
the conflicts. Then there are a number of exception scenarios—one for each possible
error in the input. In each case, the scenario shows that a proper error message is to be
output. This requires that operations needed on objects like Room, Course and Slot
check their formats for correctness. Hence, validation operations are added to these
objects.

The functional model for the problem was given in Chapter 6. It shows that from file
1, roomDB, courseDB, and slotDB need to be formed and the entries for each of these
have to be obtained from the file and validated. As validation functions are already
added, this adds the function for producing the three lists, called build.CRS.DBs().
Similarly, the DFD clearly shows that on InputFile_2 a function to build the table
of courses to be scheduled is needed, leading to the adding of the operation buildC-
toBeSched(). While building this table, this operation also divides them into the four
groups of courses, as done in the DFD. The DFD shows that an operation to sched-
ule the courses is needed. This operation (scheduleAll()) is already there. Although
the high-level DFD does not show, but a further refinement of the bubble for “sched-
ule” shows that bubbles are needed for scheduling PG courses with preferences, UG
courses with preferences, PG courses without preferences, and UG courses without
preferences (they are reflected in the structure chart as modules). These bubbles get
reflected as schedule() operations on all four subclasses—PGwithPref, UGwithPref,
PGwihoutPrefs, and UGwithoutPrefs. The DFD also has bubbles for printing the
timetable and conflicts. These get translated into print operations on TimeTable,
TimeTableEntry, ConflictTable, and ConflictTableEntry.

Now we come to the last steps of considering implementation concerns. Many new
issues come up here. First, we decided to have a generic template class, which can be
used to implement the various DBs, as all DBs are performing similar functions. Hence,
we defined a template class List. When considering the main issue of scheduling, we
notice that scheduling UG courses with preferences, as discussed in the Chapter 6, is not
straightforward, as the system has to ensure that it does not make any PG course with-
out preference “unschedulable.” To handle this, we take a simple approach of having a
data structure that will reserve slots for PG courses and will then be used to check for

CASE STUDIES 319

the safety of an assignment while scheduling PG courses with preferences. This adds
an internal class PGReserve, with operations like isAllotmentSafe() (to check if making
an allotment for UG course is “safe”), Initialize() (to initially “mark” all possible slots
where PGwithoutPref courses can be scheduled). The structure is then used to schedule
the PG courses without preferences after the UG courses with preferences are scheduled,
leading to the operation getSuitableSchedule().

To implement the scheduling operation, we decided to use the dynamic binding ca-
pability. For each subclass, the schedule() operation that has been defined is made to
have the same signature, and a corresponding virtual function is added in the superclass
CtoBeScheduled. With this, when the courses are to be scheduled, we can just go over
all the courses that need to be scheduled and call the schedule operation. Dynamic bind-
ing will ensure that the appropriate schedule operation is called, depending on the type
of course (i.e., to which of the four subclasses it belongs). All schedule operations will
interact with the TimeTable for checking the conditions specified in the requirements.
Various functions are added on TimeTable for this.

Having considered the scheduling operation, we considered the major operation on
the files. It becomes clear that to implement these operations, various parsing functions
are needed on the two files. These functions are then added. As these operations are only
needed to implement the externally visible operations on the class, they are defined as
private operations. Considering the public operations on these files reinforce the need for
insert() and lookup() operations in the different DBs, these operations require operations
to set the attributes of the independent object of which they are an aggregation. Hence,
these operations are added. In a similar manner, while considering implementation
issues various other operations on the different object classes were revealed. Various
other operations are revealed when considering implementation of other operations.
The final class diagram after the design is given in the design document available from
the Web site.

As we can see, the class diagram, even for this relatively small system, is quite com-
plex and not easily manageable. Furthermore, it is not practical to properly capture
the parameters of the various operations in object diagrams. The types of the vari-
ous attributes is also frequently not shown to keep the diagram compact. Similarly,
all associations do not get reflected. Hence, for specifying the design precisely, this
class diagram is translated to a precise specification of the classes. The final design
specifications are also given in the design document available from the Web site.

Case Study 2+ PIMS

The requirements for this case study have been given before. After reviewing the use
cases, the following classes clearly emerge.

320 CHAPTER 7. OBJECT-ORIENTED DESIGN

e Investment

e Dortfolio

e Sccurity

e Transaction

e GUI

e NetLoader

e Current Value System
o Alerts

o SccuritvManager

e Datallepository

Investment

Yo

Portfolio

Transaction

Security

Debit Credit

I 1
Bank Deposit Shares

Fioure 7.21: Clss diagrani for PINS

The relationship between them is relatively straightforward. The class diagram con-
taining some of the classes is shown in Figure 7.21. Though this initial class structure

CASE STUDIES 321

was evolved during modeling, later the subtypes of transaction were eliminated as they
provided little useful value. Subtypes of security type were also eliminated.

There are many use cases specified in the SRS for this system. After the initial
modeling of these classes and their methods, sequence diagrams for some of the scenarios
of some of the use cases are drawn. From this exercise, the specifications of the classes
is refined. Some of the sequence diagrams and the specifications of the classes are given
in the design document which is available from the Web site.

Chapter 8

Detailed Design

In previous chapters we discussed two different approaches for system design. In system
design we concentrate on the modules in a system and how they interact with each
other. Once a module is precisely specified, the internal logic that will implement the
given specifications can be decided, and is the focus of this chapter. In this chapter we
discuss methods for developing and specifying the detailed design of a module. We also
discuss the metrics that can be extracted from a detailed design.

8.1 Detailed Design and P_E’L,.

Most design techniques, like structured design, identify the major modules and the
major data flow among them. The methods used to specify the system design typically
focus on the external interfaces of the modules and cannot be extended to specify
the internals. Process design language (PDL) is one way_in which the design can be
communicated precisely and completely to whatever degree of detail-desired by the
des'iEriéf. That is, it can be used to specify the system design and to extend it to

include the logic design. PDL is particularly” tiseful when using top-down _{é_f:ikn"éwrhﬁaft“
techiiiques To design a system or module. ;=™

8.1.1 PDL

One way to communicate a design is to specify it in a natural language, like English.
This approach often leads to misunderstanding, and such imprecise communication is
not particularly useful when converting the design into code. The other extreme is
to communicate it precisely in a formal language, like a programming language. Such
representations often have great detail, which is necessary for implementation but not
important for communicating the design. These details are often a hindrance to easy
communication of the basic design. Ideally we would like to express the design in

323

324 CHAPTER 8. DETAILED DESIGN

minmax(infile)
ARRAY a

DO UNTIL end of input
READ an item into a

ENDDO

max, min := first item of a

DO FOR each item in a
IF max < item THEN set max to item
IF min > item THEN set min to item

ENDDO

END

Figire x.1: PDL description of the minmax program.

a language that is as precise and unambiguous as possible without having too much
detail and that can be easily converted into an implementation. This is what PDL
attempts to do.

PDL has an overall outer syntax of a structured programming language and has
a vocabulary of a natural language (English in our case). It can be thought of as
“structured English.” Because the structure of a design expressed in PDL is formal,
using the formal language constructs, some amount of automated processing can be
done on such designs. As an example, consider the problem of finding the minimum
and maximum of a set of numbers in a file and outputting these numbers in PDL as
shown in Figure 8.1.

Notice that in the PDL program we have the entire logic of the procedure, but little
about the details of implementation in a particular language. To implement this in
a language, each of the PDL statements will have to be converted into programming
language statements. Let us consider another example. Text is given in a file with one
blank between two words. It is to be formatted into lines of 80 characters, except the
last line. A word is not to be divided into two lines, and the numbers of blanks needed
to fill the line are added at the end, with no more than two blanks between words. The
PDL program is shown in Figure 8.2. Notice the use of procedure to express the design.

With PDL, a design can be expressed in whatever level of detail that is suitable
for the problem. One way to use PDL is to first generate a rough outline of the entire
solution at a given level of detail. When the design is agreed on at this level, more detail
can be added. This allows a successive refinement approach, and can save considerable
cost by detecting the design errors early during the design phase. It also aids design

8.1. DETAILED DESIGN AND PDL 325

Initialize buf to empty
DO FOREVER
DO UNTIL (#chars in buf > 80 & word boundary is reached)
OR (end-of-text reached)
read chars in buf
ENDDO
IF #chars > 80 THEN
remove last word from buf
PRINT-WITH-FILL (buf)
set buf to last word ELSEIF #chars = 80 THEN
print (Buf)
set buf to empty
ELSE EXIT the loop
ENDDO

PROCEDURE PRINT-WITH-FILL (buf)

Determine #words and #character in buf

#of blanks needed = 80 - #icharacter

DO FOR each word in the buf
print (word)
if #printed words > (#word - #of blanks needed) THEN

print (two blanks)
ELSE print (single blank)
ENDDO

Fignre ».2: PDL description of text-formatter.

verification by phases, which helps in developing error-free designs. The structured
outer syntax of PDL also encourages the use of structured language constructs while
implementing the design.

The basic constructs of PDL are similar to those of a structured language. The first
is the IF construct. It is similar to the if-then-else construct of Pascal. However, the con-
ditions and the statements to be executed need not be stated in a formal language. For
a general selection, there is a CASE statement. Some examples of CASE statements are:

CASE OF transaction type
CASE OF operator type
The DO construct is used to indicate repetition. The construct is indicated by:

DO iteration criteria

326 CHAPTER 8. DETAILED DESIGN

one or more statements
ENDDO

The iteration criteria can be chosen to suit the problem, and unlike a formal program-
ming language, they need not be formally stated. Examples of valid uses are:

DO WHILE there are characters in input file
DO UNTIL the end of file is reached
DO FOR each item in the list EXCEPT when item is Z€To

A variety of data structures can be defined and used in PDL such as lists, tables,
scalar, and integers. Variations of PDL, along with some automated support, are used
extensively for communicating designs.

8.1.2 Logic/Algorithim Design

The basic goal in detailed design is to specify the logic for the different modules that
have been specified during system design. Specifying the logic will require developing an
algorithm that will implement the given specifications. Here we consider some principles
for designing algorithms or logic that will implement the given specifications.

The term algorithm is quite general and is applicable to a wide variety of areas.
Essentially, an algorithm is a sequence of steps that need to be performed to solve
a given problem. The problem need not be a programming problem. We can, for
example, design algorithms for such activities as cooking dishes (the recipes are nothing
but algorithms) and building a table. In the software development life cycle we are
only interested in algorithms related to software. For this, we define an algorithm to be
an unambiguous procedure for solving a problem [74]. A procedure is a finite sequence
of well-defined steps or operations, each of which requires a finite amount of memory
and time to complete. In this definition we assume that termination is an essential
property of procedures. From now on we will use procedures, algorithms, and logic
interchangeably.

There are a number of steps that one has to perform while developing an algorithm
[74]. The starting step in the design of algorithms is statement of the problem. The
problem for which an algorithm is being devised has to be precisely and clearly stated
and properly understood by the person responsible for designing the algorithm. For
detailed design, the problem statement comes from the system design. That is, the
problem statement is already available when the detailed design of a module commences.
The next step is development of a mathematical model for the problem. In modeling,
one has to select the mathematical structures that are best suited for the problem. It

8.1. DETAILED DESIGN AND PDL 327

can help to look at other similar problems that have been solved. In most cases, models
are constructed by taking models of similar problems and modifying the model to suit
the current problem. The next step is the design of the algorithm. During this step the
data structure and program structure are decided. Once the algorithm is designed, its
correctness should be verified.

No clear procedure can be given for designing algorithms. Having such a procedure
amounts to automating the problem of algorithm development, which is not possible
with the current methods. However, some heuristics or methods can be provided to help
the designer design algorithms for modules. The most common method for designing
algorithms or the logic for a module is to use the stepwise refinement technique [148].

The stepwise refinement technique breaks the logic design problem into a series of
steps, so that the development can be done gradually. The process starts by converting
the specifications of the module into an abstract description of an algorithm containing
a few abstract statements. In each step, one or several statements in the algorithm
developed so far are decomposed into more detailed instructions. The successive re-
finement terminates when all instructions are sufficiently precise that they can easily be
converted into programming language statements. During refinement, both data and in-
structions have to be refined. A guideline for refinement is that in each step the amount
of decomposition should be such that it can be easily handled and that represents one
or two design decisions.

The stepwise refinement technique is a top-down method for developing detailed
design. We have already seen top-down methods for developing system designs. To
perform stepwise refinement, a language is needed to express the logic of a module
at different levels of detail, starting from the specifications of the module. We need
a language that has enough flexibility to accommodate different levels of precision.
Programming languages typically are not suitable as they do not have this flexibility.
For this purpose, PDL is very suitable. Its formal outer syntax ensures that the design
being developed is a “computer algorithm” whose statements can later be converted
into statements of a programming language. Its flexible natural language-based inner
syntax allows statements to be expressed with varying degrees of precision and aids the
refinement process.

An Example: Let us again consider the problem of counting different words in
a text file. Suppose that in the high-level structure chart of a large text processing
system, a COUNT module is specified whose job is to determine the count of different
words. During detailed design we have to determine the logic of this module so that
the specifications are met. We will use the stepwise refinement method for this. For
specification we will use PDL, adapted to C-style syntax. A simple strategy for the first
step is shown in Figure 8.3.

This strategy is simple and easy to understand. This is the strategy that we proposed
in the data flow graph earlier. The “primitive” operations used in this strategy are very
high-level and need to be further refined. Specifically, there are three operations that

328 CHAPTER 8. DETAILED DESIGN

int count (file)
FILE file;
word_list wl;
{
read file into wl
sort (wl);
count = different_words (wl);
printf (count);

Figure &.3: Strategy for the first step in stepwise refinement.

need refinement. These are (1) read file into the word list, whose purpose is to read all
the words from the file and create a word list, (2) sort(wl), which sorts the word list in
ascending order, and (3) count different words from a sorted word list. So far, only one
data structure is defined: the word list. As refinement proceeds, more data structures
might be needed.

In the next refinement step, we should select one of the three operations to be refined
and further elaborate it. In this step we will refine the reading procedure. One strategy
for implementing the read module is to read words and add them to the word list. This
is shown in Figure 8.4.

read_from_file (file, wl)

FILE file;

word_list wl;

{
initialize wl to empty;
while not end-of-file {
get_a_word from file
add word to wl

Figure 8.4 Refincment of the reading operatior.
o o

This is a straightforward strategy, simple enough to be easily handled in one refine-
ment step. Another strategy could be to read large amounts of data from the file in a
buffer and form the word list from this buffer. This might lead to a more efficient im-

8.1. DETAILED DESIGN AND PDL 329

plementation. For the next refinement step we select the counting function. A strategy
for implementing this function is shown in Figure 8.5.

int different_words (wl)
word_list wl;

{
word last, cur;
int cnt;
last = first word in wl
cnt = 1;
while not end of list {
cur = next word from wl
if (cur <> last) {
cnt = cnt + 1;
last = cur;
}
}
return (cnt)
}

Figure ¥.5: Refinement of the function different_words.

Similarly, we can refine the sort function. Once these refinements are done, we have
a design that is sufficiently detailed and needs no further refinement. For more complex
problems many successive refinements might be needed for a single operation. Design
for such problems can proceed in two ways—depth first or breadth first. In the depth
first approach, when an operation is being refined, its refinement is completely finished
(which might require many levels of refinement) before refinement of other operations
begins. In the breadth first approach, all operations needing refinement are refined once.
Then all the operations specified in this refinement are refined once. This is done until
no refinement is needed. A combination of the two approaches could also be followed.

It is worth comparing the structure of the PDL programs produced by this method
as compared to the structure produced using the structured design methodology. The
two structures are not the same. The basic difference is that in stepwise refinement, the
function sort is subordinate to the main module, while in the design produced by using
structured design methodology, it is a subordinate module to the input module. This is
not just a minor point; it points to a difference in approaches. In stepwise refinement, in
each refinement step we specify the operations that are needed (as we do while drawing

330 CHAPTER 8. DETAILED DESIGN

the data flow diagram). In structured design, the focus is on partitioning the problem
into input, output, and transform modules, which usually results in a different structure.

8.1.3 State Modeling of Classes

For object-oriented design, the approach just discussed for obtaining the detailed design
may not be sufficient, as it focuses on specifying the logic or the algorithm for the
modules identified in the (function-oriented) high-level design. But a class is not a
functional abstraction and cannot be viewed as an algorithm. A method of a class can
be viewed as a functional module, and the methods can be used to specify the logic for
the methods.

The technique for getting a more detailed understanding of the class as a whole, with-
out talking about the logic of different methods, has to be different from the refinement-
based approach. An object of a class has some state and many operations on it. To
better understand a class, the relationship between the state and various operations and
the effect of interaction of various operations have to be understood. This can be viewed
as one of the objectives of the detailed design activity for object-oriented development.
Once the overall class is better understood, the algorithms for its various methods can
be developed. Note that the axiomatic specification approach for a class, discussed ear-
lier in this chapter, also takes this view. Instead of specifying the functionality of each
operation, it specifies, through axioms, the interaction between different operations.

A method to understand the behavior of a class is to view it as a finite state automata
(FSA). An FSA consists of states and transitions between states, which take place when
some events occur. When modeling an object, the state is the value of its attributes,
and an event is the performing of an operation on the object. A state diagram relates
events and states by showing how the state changes when an event is performed. A
state diagram for an object will generally have an initial state, from which all states in
the FSA are reachable (i.e., there is a path from the initial state to all other states).

A state diagram for an object does not represent all the actual states of the object,
as there are many possible states. A state diagram attempts to represent only the logical
states of the object. A logical state of an object is a combination of all those states from
which the behavior of the object is similar for all possible events. Two logical states
will have different behavior for at least one event. For example, for an object that
represents a stack, all states that represent a stack of size more than 0 and less than
some defined maximum are similar as the behavior of all operations defined on the stack
will be similar in all such states (e.g., push will add an element, pop will remove one,
etc.). However, the state representing an empty stack is different as the behavior of top
and pop operations are different now (an error message may be returned). Similarly,
the state representing a full stack is different. The state model for this bounded size
stack is shown in Figure 8.6.

The finite state modeling of objects is an aid to understand the effect of various
operations defined on the class on the state of the object. A good understanding of

8.2. VERIFICATION 331

pop/err-msg push

m push m pop

Non-empty—
not-—full

Push
err—msg

push

Fiowre 860 FSA model of a stack.

this can aid in developing the logic for each of the operations. To develop the logic
of operations, regular approaches for algorithm development can be used. The model
can also be used to validate if the logic for an operation is correct. As we have seen,
for a class, typically the input-output specification of the operations is not provided.
Hence, the FSA model can be used as a reference for validating the logic of the different
methods. As we will see in Chapter 10, a state model can be used for generating test
cases for validation.

State modeling of classes has also been proposed as a technique for analysis [133].
However, we believe that it has limited use during analysis, and its role is more appropri-
ate during detailed design when the detailed working of a class needs to be understood.
Even here, the scope of this modeling is limited. Tt is likely to be more of use if the
interaction between the methods through the state is heavy and there are many states
in which the methods need to behave differently.

8.2 Verification

There are a few techniques available to verify that the detailed design is consistent
with the system design. The focus of verification in the detailed design phase is on
showing that the detailed design meets the specifications laid down in the system design.
Validating that the system as designed is consistent with the requirements of the system
is not stressed during detailed design. The three verification methods we consider are
design walkthroughs, critical design review, and consistency checkers.

8.2.1 Design Walkthroughs

A design walkthrough is a manual method of verification. The definition and use of
walkthroughs change from organization to organization. Here we describe one walk-

332 CHAPTER 8. DETAILED DESIGN

through model. A design walkthrough is done in an informal meeting called by the
de31gner or the leader of the designer’s group. The walkthrough group is usually small
and contains, along with the designer, the group leader and 7or another designer of the
M designer might just get together with a colleague for the walkthrough or
the group leader might require the designer to have the walkthrough with him.

In a walkthrough the designer explains the logic step by step, and the members of
the group askTSEe_stﬂi_o_ns, point out possible errors or seek clarification, A beneficial side
emmoughs is that in the process of articulating and explaining the design in
detail, the designer himself can uncover some of the errors.

Walkthroughs are essentially a form of peer review. Due to its informal nature, they
are usually niot as eflective as the design review.

—_—

8.2.2 Critical Design Review

The purpose of critical design review is to ensure that the detailed design satisfies the
specifications laid down during system design, The critical design review process is same
m process in which a group of people get together to discuss the design
with the aim of revealing design errors or undesirable properties. The review group
includes, besides the author of the detailed design, a member of the system design
team, the programmer responsible for ultimately coding the module(s) under review,
and an independent software quality engineer. While doing design review it should be
kept in mind that the aim is to uncover design errors, not try to fix them. Fixing is
done later.

The use of checklists, as with other reviews, is considered important for the success
of the review. The checklist is a means of focusing the discussion or the “search” of
errors. Checklists can be used by each member during private study of the design and
during the review meeting. For best results, the checklist should be tailored to the
project at hand, to uncover project-specific errors. Here we list a few general items that
can be used to construct a checklist for a design review [52].

A Sample Checklist

e Docs cacli of the modules in the system design exast i detailed design?

o Are there analvses to demonstrate that the performanee requirements can be met”?
o Ave all the assumptions explicitly stated, and are they acceptable?

e Ave all relevant aspects of systen design reflected in detailed design?

o Iave the exceptional conditions been handled?

o Arc adl the data formats consistent with the svsrem desien”

e [s the design structured. and does it contorm to local standards?

8.3. METRICS 333
e Arc the sizes of data structures estimated? Ave provisions made to guard against
overflow?
o 1= cach statement specified i natiral langnage easily codable?

e Are the loop termination conditions properly specified?

o Arc the conditions in the loops ORKY
o Are the conditions in the i statements correet”
e ls the nesting proper?

o |5 the module logic too complex?

e Are the modules highly cohesive?

8.2.3 Consistency Checkers

Design reviews and walkthroughs are manual processes; the people involved in the review
and walkthrough determine the errors in the design. If the design is specified in PDL or
some other formally defined design language, it is possible to detect some design defects
by using consistency checkers.

Consistency checkers are essentially compilers that take as input the design speci-
fied in a design language (PDL in our case). Clearly, they cannot produce executable
code because the inner syntax of PDL allows natural language and many activities are
specified in the natural language. However, the module interface specifications (which
belong to outer syntax) are specified formally. A consistency checker can ensure that
any modules invoked or used by a given module actually exist in the design and that
the interface used by the caller is consistent with the interface definition of the called
module. It can also check if the used global data items are indeed defined globally in
the design.

Depending on the precision and syntax of the design language, consistency checkers
can produce other information as well. In addition, these tools can be used to com-
pute the complexity of modules and other metrics, because these metrics are based on
alternate and loop constructs, which have a formal syntax in PDL. The trade-off here
is that the more formal the design language, the more checking can be done during
design, but the cost is that the design language becomes less flexible and tends towards
a programming language.

8.3 NMetrics

After the detailed design the logic of the system and the data structures are largely
specified. Only the implementation-oriented details, which are often specific to the

334 CHAPTER 8. DETAILED DESIGN

programming language used, need to be further defined. Hence, many of the metrics
that are traditionally associated with code can be used effectively after detailed design.
During detailed design all the metrics covered during the system design are applicable
and useful. With the logic of modules available after detailed design, it is meaningful to
talk about the complexity of a module. Traditionally, complexity metrics are applied to
code, but they can easily be applied to detailed design as well. Here we describe some
metrics applicable to detailed design.

8.3.1 Cyclomatic Complexity

Based on the capability of the human mind and the experience of people, it is generally
recognized that conditions and control statements add complexity to a program. Given
two programs with the same size, the program with the larger number of decision
statements is likely to be more complex. The simplest measure of complexity, then, is
the number of constructs that represent branches in the control flow of the program,
like if then else, while do, repeat until, and goto statements.

A more refined measure is the cyclomatic complexity measure proposed by McCabe,
which is a graph-theoretic-based concept. For a graph G with n nodes, e edges, and p
connected components, the cyclomatic number V(G) is defined as

Vil == - ns

To use this to define the cyclomatic complexity of a module, the control flow graph G of
the module is first drawn. To construct a control flow graph of a program module, break
the module into blocks delimited by statements that affect the control flow, like if,
while, repeat, and goto. These blocks form the nodes of the graph. If the control
from a block i can branch to a block j, then draw an arc from node i to node j in the
graph. The control flow of a program can be constructed mechanically. As an example,
consider the C-like function for bubble sorting, given next. The control flow graph for
this is given in Figure 8.7.

{
i=1;
while (i <= n) {
j=1i
while (j <= 1i) {
if (A[i] < AL
swap(A[i]l, A[jD);
J=i+1}

W00 ~NO U WNRO

8.3. METRICS 335

Figure 8.7: Flow graph of the examnple.
: I

The graph of a module has an entry node and an exit node, corresponding to the first
and last blocks of statements (or we can create artificial nodes for simplicity, as in the
example). In such graphs there will be a path from the entry node to any node and
a path from any node to the exit node (assuming the program has no anomalies like
unreachable code). For such a graph, the cyclomatic number can be 0 if the code is a
linear sequence of statements without any control statement. If we draw an arc from
the exit node to the entry node, the graph will be strongly connected because there is a
path between any two nodes. The cyclomatic number of a graph for any program will
then be nonzero, and it is desirable to have a nonzero complexity for a simple program
without any conditions (after all, there is some complexity in such a program). Hence,
for computing the cyclomatic complexity of a program, an arc is added from the exit
node to the start node, which makes it a strongly connected graph. For a module, the
cyclomatic complezity is defined to be the cyclomatic number of such a graph for the
module.

As it turns out the cyclomatic complexity of a module (or cyclomatic number of its
graph) is equal to the maximum number of linearly independent circuits in the graph.
A set of circuits is linearly independent if no circuit is totally contained in another
circuit or is a combination of other circuits. So, for calculating the cyclomatic number
of a module, we can draw the graph, make it connected by drawing an arc from the
exit node to the entry node, and then either count the number of circuits or compute
it by counting the number of edges and nodes. In the graph shown in Figure 8.7, the

336 CHAPTER 8. DETAILED DESIGN

cyclomatic complexity is
VIGY = 10 -7+ 1= 1

The independent circuits are:

¢kt I: beeb
ckt 22 bedeb
ckt 3: abfia
ckt 4ag e

It can also be shown that the cyclomatic complexity of a module is the number
of decisions in the module plus one, where a decision is effectively any conditional
statement in the module [41]. Hence, we can also compute the cyclomatic complexity
simply by counting the number of decisions in the module. For this example, as we can
see, we get the same cyclomatic complexity for the module if we add 1 to the number
of decisions in the module. (The module has three decisions: two in the two while
statements and one in the if statement.)

The cyclomatic number is one quantitative measure of module complexity. It can be
extended to compute the complexity of the whole program, though it is more suitable at
the module level. McCabe proposed that the cyclomatic complexity of modules should,
in general, be kept below 10. The cyclomatic number can also be used as a number of
paths that should be tested during testing. Cyclomatic complexity is one of the most
widely used complexity measures. Experiments indicate that the cyclomatic complexity
is highly correlated to the size of the module in LOC (after all, the more lines of code
the greater the number of decisions). It has also been found to be correlated to the
number of faults found in modules.

8.3.2 Data Bindings

We have seen that coupling and cohesion are important concepts for evaluating a design.
However, to be truly effective, metrics are needed to “measure” the coupling between
modules or the cohesion of a module. During system design, we tried to quantify
coupling based on information flow between modules. Now that the logic of modules
is also available, we can come up with metrics that also consider the logic. One metric
that attempts to capture the module-level concept of coupling is data binding. Data
bindings are measures that capture the data interaction across portions of a software
system [90]. In other words, data bindings try to specify how strongly coupled different
modules in a software system are. Different types of data bindings are possible [90].

A potential data binding is defined as a triplet (p,z,q), where p and ¢ are modules
and z is a variable within the static scope of both p and q. This reflects the possibility

8.3. METRICS 337

that the modules p and ¢ may communicate with each other through the shared variable
z. This binding does not consider the internals of p and ¢ to determine if the variable
z is actually accessed in any of the modules. This binding is based on data declaration.

A used data binding is a potential binding where both p and ¢ use the variable =
for reference or assignment. This is harder to compute than potential data binding and
requires more information about the internal logic of a module.

An actual data binding is a used data binding with the additional restriction that
the module p assigns a value to z and g references z. It is the hardest to compute, and
it signifies the situation where information may flow from the module p to module ¢
through the shared variable z. Computation of actual data binding requires detailed
logic descriptions of modules p and gq.

All of these data bindings attempt to represent the strength of interconnections
among modules. The greater the number of bindings between two modules, the higher
the interconnection between these modules. For a particular type of binding, a matrix
can be computed that contains the number of bindings between different modules. This
matrix can be used for further statistical analysis to determine the interconnection
strength of the system or a subsystem.

R.3.3 (ohesion Metrie

Here we discuss one attempt at quantifying the cohesion of a module [54]. To compute
the value of the cohesion metric for a module M, a flow graph G is constructed for M.
Each vertex in G is an executable statement in M. For each node, we also record the
variable referenced in the statement. An arc exists from a node s; to another node s;
if the statement s; can immediately follow the statement s; in some execution of the
module. In addition to these, we add an initial node I from where the execution of the
module starts, and a final node T, at which the execution of the module terminates.
For termination statements (e.g., return, exit) we draw an arc from the statement to T.

From G a reduced flow graph is constructed by deleting those nodes that do not
refer to any variable (such as unconstrained gotos). All the arcs coming in the deleted
node are redirected to the node that is the successor of the deleted node (such nodes
will have only one successor).)

Assume that the variables are sequentially numbered as 1, 2, ..., n. For a variable
i, R; is the reference set, which is the set of all the executable statements that refer to
the variable i. The union of all the R;s is the set of all the nodes in the graph (minus
the node for T, which is a nonexecuting node). Let | G | refer to the (number of nodes
- 1) for the reduced graph.

The cohesion of a set of statements S is defined as
e DS tf/-‘f11§,5')

O i

338 CHAPTER 8. DETAILED DESIGN

where dim() is the dimension of a set of statements, which is the maximum number of
linearly independent paths from I to T that pass through any element of S. Thus, the
dimension of a set of statements S is the count of all the independent paths from the
start statement to the end statement of a module that includes at least one statement
from the set. If S is the set of all the statements in the module (if S is the same as G),
then dim S is the same as the cyclomatic complexity of the module.

The cohesion of a module is defined as the average cohesion of the reference sets

of the different statements or nodes in (reduced) G. Hence the cohesion of the module
C(M) is

L CIR)
0.V A —

T

J

Essentially, this metric is trying to measure cohesion of a module by seeing how many
independent paths of the module go through the different statements. The idea is that
if a module has high cohesion, most of the variables will be used by statements in
most paths. Hence for a high-cohesion module, the cohesion of the reference set of
each variable will be high. The highest cohesion number achievable by this is when the
dimension of all the reference sets is all the independent paths, thus the same as the
cyclomatic complexity. In other words, the highest cohesion is when all the independent
paths use all the variables of the module.

8.4 Summary

Detailed design starts after the module specifications are available, as part of the output
of the system design. The goal of this activity is to develop the internal logic of the
modules.

To express the internal logic of a module, we need a design language. The design
language should be such that it is flexible enough to be easily usable, yet precise enough
to be easily convertible into code. We have described a language, process design language
(PDL), that satisfies the requirements. PDL can be used to express the detailed design
of systems. It has a formal outer syntax and a flexible inner syntax and vocabulary,
giving it a balance between formalism and ease of expression. Stepwise refinement and
other algorithm development techniques can be used along with PDL to design as well
as specify the logic.

For objects, state modeling can be used to understand the behavior of an object,
as functional means are not sufficient. With state modeling, the state of an object is
captured with methods causing transitions between states.

84. SUMMARY 339

Like any phase, we need some metrics to evaluate the effectiveness of the phase
and to evaluate the output of that phase. We considered a metric called cyclomatic
complexity for evaluating the complexity of modules from their detailed design. This
metric can be also used to assess the overall complexity of the system, or it can be used
to identify the most complex modules, which are more likely to be “error-prone.” In a
module the cyclomatic complexity equals the number of decisions in the module plus
one. We also discussed the data binding metric and a cohesion metric.

A few techniques exist for verifying the detailed design. The most common are
design walkthroughs and critical design review. Automated tools can be used for some
consistency checking if a well-defined design language, like PDL, is used. Even with
automated consistency checkers, reviews and walkthroughs remain the most important
methods for verifying the detailed design. We have described the review process and
given a sample checklist that can be used in the review.

The detailed design activity is is frequently not performed formally because a de-
tailed design description of the modules does not always adds much value, and experi-
enced programmers feel that they can go directly to coding. Furthermore, the detailed
design document has little archival value as it is almost impossible to keep the detailed
design document consistent with the code. Hence the primary use of the detailed design
phase is to help the programmer who can specify the logic and get it verified before
writing the code. Due to this, developing the detailed design is of value mostly for the
more complex and important modules. Even for these, the detailed design is often done
informally by the programmer as part of the personal process of developing code. Due
to these reasons, we will not give the detailed design of the case study.

Exercises

1. The detailed design of a system can involve many persons, each developing the detailed
design of a set of modules. Draw a process diagram for this method of detailed design
development.

20 Extend the PDL with constriets 1o support classes. Then write the detailed design for
classes String. Btreeo Svibol Tabile,

3. Do a state modeling of these classes: String, Btree, and SymbolTable.

IoWhat featires would vou hike 1o add to PDL i the farget sonree Tanguage snpports data

abstracrion’

5. If cyclomatic complexity of a module is much higher than the suggested limit of 10, what
will you do? Give reasons and guidelines for whatever you propose.

340 CHAPTER 8. DETAILED DESIGN

fi. Design an experimsent to study the relatiouship hetween the eyelomatio congploxity and

size in LOC of modules. Colleet a st of prograni: and then perform rhe experinent and
determine the nature of the relationship between them for these programs,

7. Design an experiment to study the relation between cyclomatic complexity and “error-
proneness” of modules. If you can collect error data, execute the experiment on the data
you can collect.

Chapter 9

Coding

The goal of the coding or programming activity is to implement the design in the best
possible manner. The coding activity affects both testing and maintenance profoundly.
As we saw earlier, the time spent in coding is a small percentage of the total software
cost, while testing and maintenance consume the major percentage. Thus, it should be
clear that the goal during coding should ot be to reduce the implementation cost, but
the goal should be to reduce the cost of later phases, even if it means that the cost of
this phase has to increase. In other words, the goal during this phase is not to simplify
the job of the programmer. Rather, the goal should be to simplify the job of the tester
and the maintainer.

This distinction is important, as programmers are often concerned about how to
finish their job quickly, without keeping the later phases in mind. During coding, it
should be kept in mind that the programs should not be constructed so that they are
easy to write, but so that they are easy to read and understand. A program is read a
lot more often and by a lot more people during the later phases.

There are many different criteria for judging a program, including readability, size of
the program, execution time, and required memory. Having readability and understand-
ability as a clear objective of the coding activity can itself help in producing software
that is more maintainable. A famous experiment by Weinberg showed that if program-
mers are specified a clear objective for the program, they usually satisfy it [143]. In
the experiment, five different teams were given the same problem for which they had
to develop programs. However, each of the teams was specified a different objective,
which it had to satisfy. The different objectives given were: minimize the effort required
to complete the program, minimize the number of statements, minimize the memory
required, maximize the program clarity, and maximize the output clarity. It was found
that in most cases each team did the best for the objective that was specified to it. The
rank of the different teams for the different objectives is shown in Figure 9.1.

The experiment clearly shows that if objectives are clear, programmers tend to
achieve that objective. Hence, if readability is an objective of the coding activity,

341

342 CHAPTER 9. CODING

Resulting Rank (1 = Best)

O1 02 03 04 O5
Minimize effort 1o complete (O1) 1 4 4 5 3
Minimize nmuber of statements {0271 2-3 1 2 3)
Minhmize memory required (O3 5 2 1 4 4
Maximize prograau clarity (O] 4 3 3 2 2
Maximize ontpur clarity 1O5) 2-3 5) 1 1

Figure 910 The Weinbers experiment .

then it is likely that programmers will develop easily understandable programs. For our
purposes, ease of understanding and modification are the basic goals of the programming
activity. . .

In this chapter we will first discuss some programming practices and guidelines, in
which we will also discuss some common coding errors to make students aware of them.
Then we discuss some processes that are followed while coding. Refactoring is discussed
next, which is done during coding but is a distinct activity. We then discuss some
verification methods, followed by discussion of some metrics. We end the chapter with
a discussion of the implementation of the case studies.

9.1 Programming Principles and Guidelines

The main task before a programmer is to write quality code with few bugs in it. The
additional constraint is to write code quickly. Writing solid code is a skill that can
only be acquired by practice. However, based on experience, some general rules and
guidelines can be given for the programmer. Good programming (producing correct
and simple programs) is a practice independent of the target programming language,
although well-structured programming languages make the programmer’s job simpler.
In this section, we will discuss some concepts and practices that can help a programmer
write higher quality code. As a key task of a programmer is to avoid errors in the
programs, we first discuss some common coding errors.

9.1.1 Common Coding Errors

Software errors (we will use the terms errors, defects and bugs interchangeably in our
discussion here; precise definitions are given in the next chapter) are a reality that all
programmers have to deal with. Much of effort in developing software goes in identifying
and removing bugs. There are various practices that can reduce the occurrence of bugs,
but regardless of the tools or methods we use, bugs are going to occur in programs.
Though errors can occur in a wide variety of ways, some types of errors are found more

9.1. PROGRAMMING PRINCIPLES AND GUIDELINES 343

commonly. Here we give a list of some of the commonly occurring bugs. The main
purpose of discussing them is to educate programmers about these mistakes so that
they can avoid them. The compilation is based on various published articles on the
topic (e.g., 28, 87, 57, 55, 150]), and a more detailed compilation is available in the
TR [141].

Memory Leaks

A memory leak is a situation where the memory is allocated to the program which is
not freed subsequently. This error is a common source of software failures which occurs
frequently in the languages which do not have automatic garbage collection (like C,
C++). They have little impact in short programs but can have catastrophic effect on
long running systems. A software system with memory leaks keeps consuming memory,
till at some point of time the program may come to an exceptional halt because of the
lack of free memory. An example of this error is:

char* foo(int s)
{
char *output;
if (s>0)
output=(char*) malloc (size);
if (s==1)
return NULL; /* if s==1 then mem leaked */
return(output) ;

}

Freeing an Already Freed Resource

In general, in programs, resources are first allocated and then freed. For example, mem-
ory is first allocated and then deallocated. This error occurs when the programmer tries
to free the already freed resource. The impact of this common error can be catastrophic.
An example of this error is:

main()
{
char *str;
str=(char *)malloc(10);
if (global==0)
free(str);
free(str); /* str is already freed

}

The impact of this error can be more severe if we have some malloc statement between
the two free statements—there is a chance that the first freed location is now allocated
to the new variable and the subsequent free will deallocate it!

344 CHAPTER 9. CODING

NULL Dereferencing

This error occurs when we try to access the contents of a location that points to NULL.
This is a commonly occurring error which can bring a software system down. It is also
difficult to detect as it the NULL dereferencing may occur only in some paths and only
under certain situations. Often improper initialization in the different paths leads to
the NULL reference statement. It can also be caused because of aliases—for example,
two variables refer to the same object, and one is freed and an attempt is made to
dereference the second. This code segment shows two instances of NULL dereference.

char *ch=NULL;

if (x>0)
{
ch=’¢c’;
}
printf ("\)c", *ch); /* ch may be NULL
*ch=malloc(size);

ch = ’¢c’; /% ch will be NULL if malloc returns NULL

Similar to NULL dereference is the error of accessing uninitialized memory. This often
occurs if data is initialized in most cases, but some cases do not get covered. they were
not expected. An example of this error is:

switch(i)
{
case 0: s=0BJECT_1; break;
case 1: s=0BJECT_2;break;
}

return (s); /* s not initialized for values
other than 0 or 1 */

Lack of Unique Addresses

Aliasing creates many problems, and among them is violation of unique addresses when
we expect different addresses. For example in the string concatenation function, we
expect source and destination addresses to be different. If this is not the case, as is the
situation in the code segment below, it can lead to runtime errors.

strcat(src,destn);
/* In above function, if src is aliased to destn,
* then we may get a runtime error */

9.1. PROGRAMMING PRINCIPLES AND GUIDELINES 345

Synchronization Frvors

In a parallel program, where there are multiple threads possibly accessing some common
resources, then synchronization errors are possible [43, 55]. These errors are very difficult
to find as they don’t manifest easily. But when they do manifest, they can cause serious
damage to the system. There are different categories of synchronization errors, some of
which are:

. . .
B TINTR R S

I i i "
[RSTTR R RIS R

A Theeniatent conehronia

Deadlock is a situation in which one or more threads mutually lock each other. The
most frequent reason for the cause of deadlocks is inconsistent locking sequence—the
threads in deadlock wait for resources which are in turn locked by some other thread.
Race conditions occur when two threads try to access the same resource and the result
of the execution depends on the order of the execution of the threads. Inconsistent
synchronization is also a common error representing the situation where there is a mix
of locked and unlocked accesses to some shared variables, particularly if the access
involves updates. Some examples of these errors are given in the [141].

Arrayv Index Ont of Bounds

Array index often goes out of bounds, leading to exceptions. Care needs to be taken to
see that the array index values are not negative and do not exceed their bounds.

Arithinetic exceptions

These include errors like divide by zero and floating point exceptions. The result of
these may vary from getting unexpected results to termination of the program.

Off by One

This is one of the most common errors which can be caused in many ways. For example,
starting at 1 when we should start at 0 or vice versa, writing <= N instead of < N or
vice versa, and so on.

Eomuerated dara tvpes

Overflow and underflow errors can easily occur when working with enumerated types,
and care should be taken when assuming the values of enumerated data types. An
example of such an error is:

346 CHAPTER 9. CODING

typedef enum {A, B,C, D} grade;
void foo(grade x)

{
int 1,m;
1=GLOBAL_ARRAY[x-1]; /* Underflow possible */
m=GLOBAL_ARRAY[x+1]; /* Overflow possible */
}

INlegal use of & instead of &&

This bug arises if non short circuit logic (like & or |) is used instead of short circuit
logic (&& or ||). Non short circuit logic will evaluate both sides of the expression. But
short circuit operator evaluates one side and based on the result, it decides if it has to
evaluate the other side or not. An example is:

if (object!= null & object.getTitle() != null)

/* Here second operation can cause a null dereference */

String handling errors

There are a number of ways in which string handling functions like strcpy, sprintf,
gets etc can fail. Examples are one of the operands is NULL, the string is not NULL
terminated, or the source operand may have greater size than the destination. String
handling errors are quite common.

Buffer overflow

Though buffer overflow is also a frequent cause of software failures, in todays world its
main impact is that it is a security flaw that can be exploited by a malicious user for
executing arbitrary code.

When a program takes an input which is being copied in a buffer, by giving a
large (and malicious) input, a malicious user can overflow the buffer on the stack. By
doing this, the return address can get rewritten to whatever the malicious user has
planned. So, when the function call ends, the control goes to where the malicious user
has planned, which is typically some malicious code to take control of the computer or do
some harmful actions. Basically, by exploiting the buffer overflow situation, a malicious
user can execute arbitrary code. The following code fragment illustrates buffer overflow:

void mygets(char *str){
int ch;
while(ch=getchar() !'=’\n’ && ch!=’\0’)
*(str++)=ch;
*str="\0’;

9.1. PROGRAMMING PRINCIPLES AND GUIDELINES 347

main(){
char s2[4];
mygets(s2);
}

Here there is a possible buffer overflow attack. If the input given is large, it can
overflow the buffer s2, and by carefully crafting the bytes that go on the stack the
return address of mygets() can be replaced by an address of a malicious program. For
further discussion on buffer overflow and on writing code that is secure, the reader is
referred to [88].

9.1.2 Structured Programming

As stated earlier the basic objective of the coding activity is to produce programs that
are easy to understand. It has been argued by many that structured programming
practice helps develop programs that are easier to understand. The structured pro-
gramming movement started in the 1970s, and much has been said and written about
it. Now the concept pervades so much that it is generally accepted—even implied—
that programming should be structured. Though a lot of emphasis has been placed on
structured programming, the concept and motivation behind structured programming
are often not well understood. Structured programming is often regarded as “goto-less”
programming. Although extensive use of gotos is certainly not desirable, structured
programs can be written with the use of gotos. Here we provide a brief discussion on
what structured programming is.

A program has a static structure as well as a dynamic structure. The static structure
is the structure of the text of the program, which is usually just a linear organization
of statements of the program. The dynamic structure of the program is the sequence of
statements executed during the execution of the program. In other words, both the static
structure and the dynamic behavior are sequences of statements; where the sequence
representing the static structure of a program is fixed, the sequence of statements it
executes can change from execution to execution.

The general notion of correctness of the program means that when the program
executes, it produces the desired behavior. To show that a program is correct, we need
to show that when the program executes, its behavior is what is expected. Consequently,
when we argue about a program, either formally to prove that it is correct or informally
to debug it or convince ourselves that it works, we study the static structure of the
program (i.e., its code) but try to argue about its dynamic behavior. In other words,
much of the activity of program understanding is to understand the dynamic behavior
of the program from the text of the program.

It will clearly be easier to understand the dynamic behavior if the structure in
the dynamic behavior resembles the static structure. The closer the correspondence

348 CHAPTER 9. CODING

between execution and text structure, the easier the program is to understand, and the
more different the structure during execution, the harder it will be to argue about the
behavior from the program text. The goal of structured programming is to ensure that
the static structure and the dynamic structures are the same. That is, the objective
of structured programming is to write programs so that the sequence of statements
executed during the execution of a program is the same as the sequence of statements
in the text of that program. As the statements in a program text are linearly organized,
the objective of structured programming becomes developing programs whose control
flow during execution is linearized and follows the linear organization of the program
text.

Clearly, no meaningful program can be written as a sequence of simple statements
without any branching or repetition (which also involves branching). So, how is the
objective of linearizing the control flow to be achieved? By making use of structured
constructs. In structured programming, a statement is not a simple assignment state-
ment, it is a structured statement. The key property of a structured statement is that
it has a single-entry and a single-exit. That is, during execution, the execution of the
(structured) statement starts from one defined point and the execution terminates at
one defined point. With single-entry and single-exit statements, we can view a pro-
gram as a sequence of (structured) statements. And if all statements are structured
statements, then during execution, the sequence of execution of these statements will
be the same as the sequence in the program text. Hence, by using single-entry and
single-exit statements, the correspondence between the static and dynamic structures
can be obtained. The most commonly used single-entry and single-exit statements are:

Stivetion: i B then ST olee 82
if I3 then S|

o b W Lile I3 do Q
repeat S nptii 1

S PR RN PN

It can be shown that these three basic constructs are sufficient to program any conceiv-
able algorithm. Modern languages have other such constructs that help linearize the
control flow of a program, which, generally speaking, makes it easier to understand a
program. Hence, programs should be written so that, as far as possible, single-entry,
single-exit control constructs are used. The basic goal, as we have tried to emphasize,
is to make the logic of the program simple to understand. No hard-and-fast rule can
be formulated that will be applicable under all circumstances. Structured programming
practice forms a good basis and guideline for writing programs clearly.

It should be pointed out that the main reason structured programming was promul-
gated is formal verification of programs. As we will see later in this chapter, during
verification, a program is considered a sequence of executable statements, and verifica-

9.1. PROGRAMMING PRINCIPLES AND GUIDELINES 349

tion proceeds step by step, considering one statement in the statement list (the program)
at a time. Implied in these verification methods is the assumption that during execu-
tion, the statements will be executed in the sequence in which they are organized in
the program text. If this assumption is satisfied, the task of verification becomes easier.
Hence, even from the point of view of verification, it is important that the sequence of
execution of statements is the same as the sequence of statements in the text.

A final note about the structured constructs. Any piece of code with a single-entry
and single-exit cannot be considered a structured construct. If that is the case, one
could always define appropriate units in any program to make it appear as a sequence
of these units (in the worst case, the whole program could be defined to be a unit). The
basic objective of using structured constructs is to linearize the control flow so that the
execution behavior is easier to understand and argue about. In linearized control flow, if
we understand the behavior of each of the basic constructs properly, the behavior of the
program can be considered a composition of the behaviors of the different statements.
For this basic approach to work, it is implied that we can clearly understand the behavior
of each construct. This requires that we be able to succinctly capture or describe the
behavior of each construct. Unless we can do this, it will not be possible to compose
them. Clearly, for an arbitrary structure, we cannot do this merely because it has a
single-entry and single-exit. It is from this viewpoint that the structures mentioned
earlier are chosen as structured statements. There are well-defined rules that specify
how these statements behave during execution, which allows us to argue about larger
prograis.

Overall, it can be said that structured programming, in general, leads to programs
that are easier to understand than unstructured programs, and that such programs
are easier (relatively speaking) to formally prove. However, it should be kept in mind
that structured programming is not an end in itself. Our basic objective is that the
program be easy to understand. And structured programming is a safe approach for
achieving this objective. Still, there are some common programming practices that are
now well understood that make use of unstructured constructs (e.g., break statement,
continue statement). Although efforts should be made to avoid using statements that
effectively violate the single-entry single-exit property, if the use of such statements is
the simplest way to organize the program, then from the point of view of readability, the
constructs should be used. The main point is that any unstructured construct should be
used only if the structured alternative is harder to understand. This view can be taken
only because we are focusing on readability. If the objective was formal verifiability,
structured programming will probably be necessary.

9.1.3 Information Hiding

A software solution to a problem always contains data structures that are meant to
represent information in the problem domain. That is, when software is developed to

350 CHAPTER 9. CODING

solve a problem, the software uses some data structures to capture the information in
the problem domain.

In general, only certain operations are performed on some information. That is, a
piece of information in the problem domain is used only in a limited number of ways
in the problem domain. For example, a ledger in an accountant’s office has some very
defined uses: debit, credit, check the current balance, etc. An operation where all
debits are multiplied together and then divided by the sum of all credits is typically not
performed. So, any information in the problem domain typically has a small number of
defined operations performed on it.

When the information is represented as data structures, the same principle should be
applied, and only some defined operations should be performed on the data structures.
This, essentially, is the principle of information hiding. The information captured in the
data structures should be hidden from the rest of the system, and only the access func-
tions on the data structures that represent the operations performed on the information
should be visible. In other words, when the information is captured in data structures
and then on the data structures that represent some information, for each operation on
the information an access function should be provided. And as the rest of the system
in the problem domain only performs these defined operations on the information, the
rest of the modules in the software should only use these access functions to access and
manipulate the data structures.

Information hiding can reduce the coupling between modules and make the sys-
tem more maintainable. Information hiding is also an effective tool for managing the
complexity of developing software—by using information hiding we have separated the
concern of managing the data from the concern of using the data to produce some
desired results.

Many of the older languages, like Pascal, C, and FORTRAN, do not provide mech-
anisms to support data abstraction. With such languages, information hiding can be
supported only by a disciplined use of the language. That is, the access restrictions will
have to be imposed by the programmers; the language does not provide them. Most
modern OO languages provide linguistic mechanisms to implement information hiding.

9.1.4 Some Programming Practices

The concepts discussed above can help in writing simple and clear code with few bugs.
There are many programming practices that can also help towards that objective. We
discuss here a few rules that have been found to make code easier to read as well as
avoid some of the errors. Some of these practices are from [141].

Control Constructs: As discussed earlier, it is desirable that as much as possible
single-entry, single-exit constructs be used. It is also desirable to use a few standard
control constructs rather than using a wide variety of constructs, just because they are
available in the language.

